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Abstract

Food waste from households contributes the greatest proportion to total food waste in devel-

oped countries. Therefore, food waste reduction requires an understanding of the socio-

economic (contextual and behavioural) factors that lead to its generation within the house-

hold. Addressing such a complex subject calls for sound methodological approaches that

until now have been conditioned by the large number of factors involved in waste genera-

tion, by the lack of a recognised definition, and by limited available data. This work contrib-

utes to food waste generation literature by using one of the largest available datasets that

includes data on the objective amount of avoidable household food waste, along with infor-

mation on a series of socio-economic factors. In order to address one aspect of the com-

plexity of the problem, machine learning algorithms (random forests and boruta) for variable

selection integrated with linear modelling, model selection and averaging are implemented.

Model selection addresses model structural uncertainty, which is not routinely considered

in assessments of food waste in literature. The main drivers of food waste in the home

selected in the most parsimonious models include household size, the presence of fussy

eaters, employment status, home ownership status, and the local authority. Results, regard-

less of which variable set the models are run on, point toward large households as being a

key target element for food waste reduction interventions.

Introduction

Food waste has been drawing increasing scholarly attention due to the sizeable proportions it

has assumed, and its socio-economic and moral implications ([1];after having been well below

100, the yearly number of scientific papers including the keyword “food waste” reached 100 in

2007, then grew to 219 in 2011, and peaked 722 in 2016 see https://www.scopus.com/). Its
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definition has been characterized by a lively debate that lead different national and interna-

tional organizations to identify different boundaries emphasizing diverse elements characteriz-

ing the food waste issue [2–4]. In what follows, we define food waste as “avoidable food waste”,

i.e. any “food and drink thrown away that was, at some point prior to disposal, edible” [5].

In developed countries, households are responsible for the relatively largest proportion of

all food wasted [1–3, 6]. Indeed, economic development and urbanisation result in the adop-

tion of lifestyles, working conditions and social dynamics typical of urban areas which, in turn,

increase food waste in the downstream segments of the value chain (retail, food services, and

households) [7]. Furthermore, developed countries differ from one another as for the food

waste generated and the policies adopted to address this challenge. Cross-country differences

in waste generating behaviours may also depend on habits embedded in the national culture

[6, 8]. This holds although urbanisation and globalisation create increasingly homogeneous

dietary and food waste patterns worldwide [8].

Some authors have detected geographical differences in the individual behaviours towards

food waste among EU countries, due to factors such as per-capita income, and citizens’ per-

ception of sustainability issues [7, 9–11]. Although developed countries present high per-capita

incomes, hunger in these countries is a reality: e.g., approximately 4% of US households, and

more than 5% of Australian households are experiencing hunger [12]. On the other hand, the

abundance of food results in high food waste levels [13]. For example, household food waste

account for 6.7 million tonnes of edible food or 33% of all food purchased in the UK, 6.3 mil-

lion tonnes or 20% of food purchased in Australia, and more than 160 million tonnes in the

US [12]. If redistributed to people in need, this food could help reduce hunger, while food

waste levels could also decrease.

Food waste generates negative environmental impacts and economic costs. It has been esti-

mated that nearly one third of the food mass, and one quarter of the food calories globally pro-

duced are either lost or wasted, corresponding to 3.3 Gtonnes of CO2 equivalent [2, 7]. In the

EU-28, annual food waste amounts to 180 kilograms per person, i.e. 25% of the food purchased

by households [2,7]. Hence, the valorisation of physiological and unavoidable waste and resi-

dues as inputs for diverse productive processes, such as bioenergy or the production of bio-

based products, might create socio-economic benefits and reduce environmental repercus-

sions. Indeed, most wasted foods are of primary interest to biofuel production [13]. Neverthe-

less, the social, economic and environmental viability of food waste as a source of biofuel

remains underdeveloped, thus requiring effective strategies to reduce food waste generation.

Overall, food waste is a broad topic that has been discussed from different angles in recent

literature [1–3, 6, 12, 13]. In order to contribute to the understanding of and the reduction of

food waste, various attempts have been made to identify and analyse the socio-demographic

factors influencing food waste behaviours (e.g. [7, 14–22]). This study focuses on the drivers of

food waste generation at household level. Indeed, a proper identification of them could help

design effective policies for food waste prevention and reduction.

The rest of the paper is organised as follows. The next section provides a background on

food waste drivers at household level, and addresses the issues of complexity related to the

empirical modelling of these drivers. A detailed description of the data and methodology can

be found in the subsequent section, followed by the results and their discussion.

Food waste drivers at household level

Individual and situational factors leading to the generation of household food waste include

household characteristics, shopping habits and location in relation to shops, eating/cooking
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behaviours, and awareness (e.g. the understanding of date labels on products, attitudes to

waste and recycling, consumer preference for perceived high-quality food, etc.).

Literature suggests that food waste is influenced by household characteristics with a major

factor represented by the composition of the family:

• in absolute terms, larger households waste more food than smaller households, but they are

also more efficient, wasting less food per person than smaller households; instead, single-

person households tend to throw away more food on a per capita basis [6, 20–25];

• adults waste more in absolute terms than children, but households with children tend to

waste more than households without children, with food waste rates varying with children’s

age [6, 20–25];

• the gender of the person mainly responsible for grocery shopping, and for food storing and

cooking might also have implications [6, 7, 20, 24];

• differences between older and younger people are not consistent, yet retired households

seem to waste less because they have more available time (compared to younger households

and households with children) and tend to be smaller [6, 20–23, 26, 27];

• income levels matter, but the relationship between individual income, food behaviours, and

household food waste [10, 28, 29].

As for shopping habits, the frequency of shopping [20, 30–32], the location of the stores

related to the frequency of the purchase, and the planning of the shopping [24, 33] represent

other aspects of consumer behaviour related to food waste. On the one hand, consumers may

over-purchase if they need to shop infrequently [24, 33]; on the other hand, frequent shopping

may induce unplanned and impulsive purchases, which tend to increase food waste [34]. Not

planning shopping trips, absence of shopping lists, not planning meals, and not checking

stocks lead to the generation of food waste at household level [3, 7, 35–39].

Lack of awareness and/or knowledge is one of the most commonly identified drivers of

food waste at household level [2, 10, 21–23, 30, 32, 37, 40]. This includes consumers’ confusion

with product labelling, as well as a lack of knowledge on how to use food efficiently—e.g. mak-

ing the most of leftovers, or cooking with available ingredients [37, 38]. Consumers are rarely

aware of the difference between the labels “use by” and “best before”; hence, they are not using

them effectively when planning food usage and/or discard to avoid the risks associated to

food safety [3, 37, 38, 41, 42]. Not understanding and/or not abiding by food storage and use

instructions provided on food packages also leads to food waste [42]. Finally, consumers may

not use packaging functionality, e.g. taking some products out of their packaging after getting

home, thus losing the protection of modified atmosphere packaging, or not using cool bags to

bring chilled food home [33, 35, 43, 44].

While food waste drivers have been discussed extensively in recent literature, their relative

importance and their interactions have received little attention. Literature suggests that food

waste drivers are multiple and interrelated, characterizing the problem as “wide and multiface-

ted” [7]. This framework is further complicated by the time and location gap “between choices

made upstream (food purchasing and using decisions) and actions downstream (frequency of

household food waste)”, which prevents intentionality and commitment from working effec-

tively [10].

Besides, since different authors propose different definitions of food waste, the bound-

aries of the systems considered are also different (e.g., what is avoidable and non-avoidable

food waste) [4]. This lack of consistency in the notion of food waste may lead consumers to

resort to their subjective perception of what food waste is, when asked to assess related
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behaviours and quantities. Indeed, the adoption of different methodologies for data collec-

tion (questionnaires, diaries, waste sorting analysis), or of poor or no measurements ham-

pers the lack of consistency in terms of quantification [4, 45]. Due to the high costs of

measuring household food waste, most studies in the existing literature base their inference

on self-reported measures detected by means of questionnaires. Here, the use of real food

waste as a dependent variable helps overcome the problem of underestimation for social

desirability bias, and of misreporting due to other behavioural biases, thus reducing the risk

of incorrect inference.

Addressing complexity in food waste models

The high number of interconnected food waste drivers described above implies that traditional

modelling approaches may not be appropriate, or need specific adjustments. The approaches

to address multivariate problems have traditionally followed a procedure whereby data are col-

lected on several variables that may plausibly explain the response variable, and analysed to

find a single “best” model [46]. The model’s structure is often defined a priori, and the estimate

from this model then forms the basis of inference. This approach ignores the potential for

other models to explain the data, and this model uncertainty increases the potential for incor-

rect or misleading inference [47]. This is shown empirically for sociological models (OLE

regression) by Young [48], where statistical significance is overturned by minor and sensible

changes in model structure. Hence, there is a higher probability of false inferences (i.e. Type I

errors or false positives, and Type II errors or false negatives).

False positives (Type I) are often more costly than false negatives (Type II) because they

lead to wasted resources on further research and ineffective policy interventions [49]. The

probability of Type I errors can be increased by increasing the number of parameters modelled

but also by “researcher degrees of freedom” (sensu [49]). Unreported aspects of the research

can lead to increased risk of false positives through changes in the selection of dependent vari-

ables or covariates, altering sample sizes and only reporting subsets of experimental conditions

[49].

Food waste drivers are multiple, interconnected and influenced by a number of diverse fac-

tors related to the influence of the technological, institutional and social “contexts” where they

are situated [7]. Addressing such a complexity requires the inclusion of multiple explanatory

variables, increasing the risk of Type I and Type II errors. However, most assessments of food

waste use a regression framework with multiple explanatory variables without addressing

issues of model structural uncertainty, and rely on a single model specification, based either on

the extant literature or on the author’s hypotheses, to make inferences from (e.g. [9, 10, 32, 50,

51]). Basically, while the set of variables gathered are bounded to be selected according to the

theory of the collectors, it is possible to avoid any further bias on the model construction due

to the artificial selection of variables and interaction terms to be included in the model itself.

This theory-based approach (using one single model) is blinkered to other possible explana-

tory models (within the realms of the data collected). In presence of multiple potential explana-

tory variables, model selection has long been championed as being more robust to Type I

errors [52].

Here, we adopt a novel empirical approach to identifying the drivers of food waste to

inform waste reduction policies. Our approaches for variable and model selection, differ from

the more common (and highly biased; [53]) stepwise selection based on the coefficients’ level

of significance. With this approach, the aim is to identify the key drivers of household food

waste, whilst more accurately reflecting the uncertainty inherent in the analysis of observa-

tional multidimensional data.

Reducing false positives in understanding household food waste drivers
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Materials and methods

Data

Data on UK consumers’ demographics and behaviours collected by The Waste and Resources

Action Programme [5] are used in order to appraise the weight of “avoidable food waste per

household” using model selection and model averaging [54] to account for model uncertainty.

The dataset consists of face-to-face in-home interview responses (categorical data) on

socio-demographic aspects of households and behavioural responses to food waste, along with

data on the amount of waste collected from the kerbside. We undertook a complete case analy-

sis utilising only the households for whom all information was reported, which resulted in a

sample size of 1,770 (from 1,799) UK households. Household waste was collected from outside

each home (flats and houses with shared waste collections were not assessed) by ad hoc teams.

After collection, the waste of each household was weighed and sorted. All non-food items were

removed and weighed. Food items without packaging were sorted by food type and then

weighed. Food items with packaging were removed from the packaging, weighed separately,

and any details on the packaging (e.g. best before dates) were recorded (for more details, see

[5] and references within). Finally, food waste was standardised per household (i.e. food waste

per person was calculated) to account for the difference that a larger number of family mem-

bers could make to the amount of waste produced.

Variable reduction

With 50 variables, the set of potential models was well over a quadrillion and, therefore, vari-

able reduction was first undertaken using the random forest algorithm [55]. The “Boruta”

algorithm (in the package “Boruta”, [56], in the R statistical environment [57]; all R code for

analyses is provided in S1 File) adds randomness to the variable set by creating shuffled copies

of all variables (“shadow features”). It then runs a random forest classifier on the extended

dataset, and assesses the mean decrease in accuracy to evaluate the importance of each variable

(higher means are more important). At each iteration, “Boruta” assesses if each variable has a

higher Z-score than the maximum Z-score of its shadow features. Variables with scores lower

than shadow features are deemed highly unimportant, and removed from the set. The algo-

rithm runs until all variables are confirmed or rejected (or it reaches a specified limit of runs—

here, we used 500 trees maximum).

Modelling

Generalised Linear Models (GLMs) were applied to assess correlations between “avoidable

household food waste” and the socio-demographic and behavioural variables retained after

applying the “Boruta” algorithm (Table 1).

All categorical variables were treated as factors in the analysis. The Akaike Information Cri-

terion corrected for small sample size (AICc) was used to determine a set of plausible models;

modelling averaging [54] was used to obtain estimates of the effect of predictors on “avoidable

household food waste”. Variables that were retained in the model selection procedure were

assessed for interaction. GLMs, model selection and model averaging were carried out using

the “glmulti” package [58] in the R programme.

Exploratory sensitivity analysis

The variables summarizing the self-reported discard of different types of food have the poten-

tial to introduce circularity, as they may predict overall food waste. Therefore, after running

the variable reduction and model-selection procedures, we removed them from the full model,

Reducing false positives in understanding household food waste drivers
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Table 1. The variables used in the development of regression models assessing the drivers of consumer food waste (note that some variables listed below are multi-

faceted due to the various product types addressed). Avoidable food waste was the dependent variable and the others were the explanatory variables.

Variable Definition Measurement

Avoidable Food waste Food and drink thrown away that was, at some point prior to

disposal, edible, e.g. milk, lettuce, fruit juice, meat (excluding

bones, skin, etc.)

Weight (g)

Minimum: 0

1st Quartile: 379

Median: 1080

Mean: 1668

3rd Quartile: 2300

Maximum:19836

Gender Sex of the person responsible for the majority of the

household shopping and cooking

Male/Female

Age structure Based on ages of all household members Mixed aged household

Under 65 years old only

65 years and above only

Household size The number of people in the household 1,2,3,4,5,or 6 people

Household composition Description of the household composition Couple

Family with at least one child under 18 years olds

Family with child(ren) all 18 years or over

Single occupancy

Other

Home ownership The ownership status of the house, e.g. privately rented or

owned with mortgage

Council/housing association rented

Owned outright

Owned with a mortgage

Privately rented

Other

Type of residence, The type of house lived in Bungalow

Detached house

Semi-detached house

Terraced house

Flat

Other

Presence of children Are children between 3 & 11 years present in the household Yes/No

Social-economic status Calculated based on the characteristics of the main earner ABC1: Higher & intermediate managerial, administrative,

professional occupations or Supervisory, clerical & junior

managerial, administrative, professional occupations

C2: Skilled manual occupations

DE: Semi-skilled & unskilled manual occupations, Unemployed and

lowest grade occupations

Employment status The employment status of the person responsible for the

majority of the household shopping and cooking

Not working

Paid work

Retired

Not stated

Pre planning The extent to which meals are planned All main meals are planned

Most main meals are planned

Few main meals are planned

Decide on the day

(Continued)
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Table 1. (Continued)

Variable Definition Measurement

Cupboard checking Are the cupboards/Fridge/Freezer checked before shopping

trips for:

Yes

Fruit No

Vegetables Don’t Know

Bread Don’t buy the item

Meat

Fish

Milk

Ready meals

Tinned food

Frozen food

Salads

Preplanning list Do the statements describe pre-shopping behaviours? Yes/No

Kept a ‘running list’ during the week of things needed to buy

I made a list to take to the shop with me

I had a very clear list in my head

I had some idea of the kind of things I wanted to buy

I shopped online, and I used my list of favourites to help me

remember what to buy

None of the above

Don’t know/can’t remember

Not stated

Storage of cheese and meats

after opening

How cheese and meats are stored in the home Don’t eat this food

Wrapped / box / bag

Original packaging

No wrapping

Other / don’t know

Use of the fridge to store apples

and carrots

How apples and carrots are stored Don’t buy / store

Use fridge (and possible other place to store)

Use fruit bowl/Use cupboard

Other storage

Don’t know / can’t remember

Using leftovers What happened to the last left-overs from a meal Yes

Used as part of another meal No

no Used as a meal in themselves

Used as a meal in themselves

Didn’t get used and were thrown away

Still being stored

Composted

Fed to the dog/pets/birds

Given to family/friends

Never have left-overs

Placed in freezer/fridge/frozen for later use

Other

Don’t know/can’t remember

Not applicable

Not stated

(Continued)
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and re-ran these two steps. Similarly, the local authority was considered as a non-designed

confounder (it was recorded but without any underlying justification). Again, we removed this

variable in the full model and re-ran the analysis. Finally, we re-ran the analysis with both dis-

card behaviours and local authority removed.

Results

Model set reduction

The “Boruta” algorithm consistently identified household size, home ownership status, house-

hold composition, employment status and the presence of fussy eaters as significant drivers

of food waste in all sets of variables (Fig 1a–1d), including those reduced for exploratory sensi-

tivity analysis. Household size was always the most important variable in the variable set

(Fig 1a–1d).

Table 1. (Continued)

Variable Definition Measurement

Cooking the right amount of

rice and pasta

Was there rice or pasta left after a meal Yes

No

Was too much cooked deliberately for use in another meal Yes

No

Don’t Know

Not Applicable

Throwing away items because

they have gone past their date

label

How much of the items list had been thrown away because

they are past the date on their label:

Quite a lot

Fresh meat A reasonable amount

Pre-cooked meats A small amount

Milk Hardly any

Yoghurts None

Ready meals Don’t eat it

Fruit juices

Bread or other bakery items

Fresh fruit

Vegetables

Frozen items

Any other items

None of the above

Don’t know/can’t remember

Not stated

Type of shopping trips made Shopping trip types I buy almost all my food in a main shop

I buy some food in a main shopping trip and some in ‘top-up’ shops

I mostly buy food in smaller, ‘top-up’ shops

Not stated

Frequency of main shopping

trip

Shopping habits I do a main shop more than once a week

I do a main shop about once a week

I do a main shop about once a fortnight

I do a main shop about once a month

I almost never do a main shop

Fussy eaters Proportion of occupants of the household classed by the

survey respondent to be fussy eaters

Proportion (between 0 and 1)

https://doi.org/10.1371/journal.pone.0192075.t001
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Model selection

The key drivers of consumers food waste included in the full model (as determined by the

“Boruta” algorithm, Fig 1a) were household size, local authority, household composition,

house type, home ownership status, employment status, the presence of fussy eaters, the pres-

ence of children aged between 3 and 11, age of the respondent, social grouping, checking cup-

boards for tinned food prior to shopping, and discard behaviours related to vegetables, cheese,

and food past its sell by date. This equated to a potential 16,384 models.

Of the 14 variables, seven were retained in the final model sets (the most parsimonious

models, ΔAICc<2; see Table 2).

The variables with the largest positive effect included the presence of fussy eaters, household

size, and one particular local authority (individual local authority identity was anonymized).

Variables with the largest negative effect included discard behaviours interacting with the pres-

ence of fussy eaters, employment status interacting with the presence of fussy eaters, four spe-

cific local authorities and home ownership status (owning a house outright).

Exploratory sensitivity analysis

The variables included in the model with discard behaviours removed (Fig 1b) were household

size, local authority, household composition, house type, home ownership status, the presence

of fussy eaters, and employment status. This equated to a potential 128 models. The final

model set included six of these variables: household size, local authority, home ownership

Fig 1. a) Variable importance (the loss of accuracy of classification) as determined by the “Boruta” algorithm for the full variable set. Variables retained

for model selection (those with high or medium importance) are highlighted in green and yellow. Shadow feature minimum, mean and maximum are

highlighted in blue; b) with “Discard behaviours” removed from the variable set; c) with “Local authority” removed from the variable set; d) with both

“local authority” and “discard behaviours” removed from the variable set.

https://doi.org/10.1371/journal.pone.0192075.g001
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status, the presence of fussy eaters, respondent age, and employment status (S2 Table). Vari-

ables with the largest positive effect included the presence of fussy eaters, employment (work-

ing), household size (increasing with a larger number of occupants) and age (35–64). Variables

with the largest negative effect included interactions between fussy eaters and employment,

age (35–64), employment (not working), two specific local authorities, and home ownership

status (with a mortgage or owned outright).

Variables with the largest positive effect in the model with local authority removed (see Fig

1c for the variables retained) included household size (two, three, four or five people), while

variables with the largest negative effect included home ownership (owned outright and

owned with a mortgage) and employment (retired) (See S3 Table). The results of the models

with both local authority and discard behaviours excluded were very similar (See S4 Table).

Discussion

The drivers of UK household food waste

The variables selected in the most parsimonious models always included household size, the

presence of fussy eaters, employment, home ownership status, and local authority. Household

size (i.e. the number of people in the household) appears to be a generally well-supported

explanatory variable [14, 16–18, 20–22, 59]. Levels of avoidable food waste per household

increased with increasing household size. Aschermann-Witzel et al. [60] suggest that house-

hold size and composition (i.e. the age of household members) are the key demographic driv-

ers of food waste, because they relate to multiple behavioural factors, which typically differ

across household types. These include, for example, the purported advanced food skills of the

older generation (making use of leftovers, etc.), higher food security and safety concerns of

households with children, greater levels of fussiness in households with children, and lower

degrees of planning in young or single-person households. Our results support the idea that

fussiness in a household has a small but noteworthy effect on food waste generation.

Regardless of variable set, our results point toward families (i.e. large households) as being a

key target group for food waste reduction initiatives. Targeted initiatives (such as educational

campaigns and increased frequency and modalities of waste collection) in areas with a high

density of larger households need to be prioritised for study and intervention. Other evidence

[61] indicates that the reasons these households waste food are more likely to be due to cook-

ing or serving too much or fussy eating (rather than not using food before it goes off).

Survey respondents stating that they discard “a reasonable amount” of vegetables was

related to higher levels of waste compared to other food categories. Discarding “quite a lot”

had a similar mean value of the remaining food categories, but greater variation. Low levels of

Table 2. Five plausible models (ΔAIC<2.0) were selected from the original set of 16,384 models. Models were ranked by AICc (“:” indicates interaction terms). The

averaged coefficients of the models are shown in S1 Table.

Component models: df logLik AICc delta weight

Avoidable waste per Household ~ Discard Sellby+ Discard vegetables+ Fussy eaters + Household size + employment+ Local

Authority + Home ownership+ Discard Vegetables:Fussy eaters+ Fussy eaters:Employment

47 -15481.2 31059.1 0 0.28

Avoidable waste per Household ~ Age+ Discard Sellby+ Discard vegetables+ Fussy eaters + Household size + employment+

Local Authority + Home ownership+ Discard Vegetables:Fussy eaters+ Fussy eaters:Employment

48 -15480.2 31059.13 0.03 0.28

Avoidable waste per Household ~ Age+ Discard Sellby+ Discard vegetables+ Fussy eaters + Household size + employment+

Local Authority +Discard Vegetables:Fussy eaters+ Fussy eaters:Employment

44 -15484.9 31060.1 1 0.17

Avoidable waste per Household ~ Age+ Discard vegetables+ Fussy eaters + Household size + employment+ Local

Authority + Home ownership+ Discard Vegetables:Fussy eaters+ Fussy eaters:Employment

42 -15487.1 31060.39 1.29 0.15

Avoidable waste per Household ~ Sellby+ Discard vegetables+ Fussy eaters + Household size + employment+ Local

Authority + Home ownership+ Discard Vegetables:Fussy eaters+ Fussy eaters:Employment

41 -15488.4 31060.78 1.68 0.12

https://doi.org/10.1371/journal.pone.0192075.t002
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vegetables discarded by consumers logically lead to reduced avoidable food waste as vegetables

are the single largest food group contributing to household food waste in the UK [5]. However,

there may be some discrepancy between stated and actual levels of discard due to a range of

factors [62]. Interventions aimed at preventing vegetable waste through, for example, support-

ing the purchase of an appropriate amount, storing it optimally or providing recipes to help

use up leftovers may help further reduce food waste.

Local authority was not intended as a predictive variable in the original data collection,

as there were no socio-demographic assumptions underlying the sampling regime. The fact

that this descriptive variable (treated as a random variable in the model) is an important

explanatory variable highlights the large geographical variability in the food waste behaviours

observed. A combination of imprecision and high heterogeneity in the variables used to assess

consumer food waste may explain the difficulty in determining significant relationships. An

alternative explanation is that regional factors are important (but we could not determine any

evidence for this in our dataset). The location could be a proxy for socio-economic factors, as

well as factors related to the availability and the identity of retailers. Further investigation into

the drivers of these regional differences is warranted.

Developing an evidence-based approach to food waste

By using model selection to identify the most suitable structure of a model, researchers can

reduce the probability of spurious results. The danger of Type I errors is that they lead to

increased uncertainty in the effectiveness of interventions, because of both incorrectly target-

ing consumers’ behaviours and wrongly assigning significance to specific interventions. Selec-

tive reporting, where only some of the variables measured are reported in the outcome,

further reduces the ability to synthesise across studies (e.g. through systematic review and

meta-analysis) an issue already highlighted as a constraint in consumer food waste research

[63].

Type II errors are reduced effectively by increasing the sample size; however, Type I errors

may still be highly probable where a large number of variables are used (i.e. “p-hacking”),

and/or where many models are run but only those which confirm pre-conceived ideas or theo-

ries are reported. To effectively reduce Type I error (one can never totally eliminate Type I or

Type II errors), researchers can take a number of potential approaches:

1. Careful selection of variables with a rationale for inclusion: a pre-published protocol can be

used to identify the variables that will be tested and processed to reduce the biases under-

taken by the researcher. This is a popular approach in meta-analysis and systematic review,

but can be applied more widely.

2. Provision of all analysis and data in the rawest possible form in an open online data reposi-

tory (e.g. Open Science Foundation, https://osf.io) to allow independent analysis (data shar-

ing is not always appropriate or possible, due to commercial sensitivities, etc.).

3. Transparent variable selection and model averaging, as well as reporting multiple model

results with a clear indication of the range of potential outcomes and the errors associated

with these (e.g. confidence limits, credible intervals, etc.) should be standard practice.

Our approach accounts for model structural uncertainty in a frequentist paradigm. Of

course, the issue of Type I errors becomes irrelevant when using Bayesian models, however

with frequentist statistics still dominating research in consumer science there is a need to

reduce the probability of spurious results in a robust manner. Stepwise approaches (which are

superficially similar to our approach) have largely been discredited in many fields (e.g. in
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medicine and ecology; [53, 64]) because they increase (among other problems) the Type I

error rate.

In addition to the problems of variable choice and Type I errors in models of consumer

research, there are problems with the typical approaches to complexity adopted in this field.

There is a well-developed body of complexity theory (e.g. [65]) which appears to be largely

ignored in favour of a generic mixed methods approach to data acquisition and regression

based modelling (e.g. factor analysis, structural equation modelling, mixed regression model,

etc.). The lack of a coherent framework is often justified with adoption of a single theoretical

perspective exacerbated by failure to consider model (structural) uncertainty. The tools to

undertake more structured and nuanced analysis exist (e.g. agent based models, network anal-

ysis, systems dynamics; [66]) and should be routinely deployed in consumer research as they

are in other scientific disciplines.

Conclusions

The drivers of food waste are complex and interrelated, and may not lend themselves well to

traditional modelling approaches. This high complexity may be better analysed through other

statistical models or paradigms—such as Bayesian analysis—in order to reduce the probability

of false positives. What is clear is that food waste policies must be developed using an evi-

dence-based approach, since traditional modelling paradigms are not sufficient to address this

complexity. This field of study can learn much from medicine and ecology, where data are

often similarly complex and uncertain [67]. Standard protocols for data collection and defini-

tion would need to be agreed to allow meta-analysis. For data collection, protocols are emerg-

ing, such as the FUSIONS Definitional Framework for Food Waste [4] and Food Waste

Quantification Manual [68] and the World Resources Institute Food Loss and Waste Standard
(http://flwprotocol.org/). With more rigorous evidence-based approaches, the drivers of food

waste can better be determined, and the effectiveness of any trialled intervention can be more

certain. This will lead to decreased cost and a more meaningful contribution to the under-

standing of food waste.

Among the most important drivers identified is household size; however, the procedure of

model reduction and selection allows us to uncover a positive relationship between household

size and food waste, at odds with most of the previous literature on the issue [14, 23, 26, 69].

Other important drivers are the various dimensions of the household composition, for which

the results corroborate those of the literature. Interestingly, some of the drivers identified as

important by the literature, such as awareness of the food waste problem and shopping habits,

here are found as not important. This testifies the relevance of unbiased model selection of an

evidence-based approach to data analysis.

Finally, no evidence emerges on the behavioural characteristics of individuals at the point

of purchase (i.e. in the supermarket), and on how they may influence the food waste genera-

tion. Any further research and, in particular, those focusing on large households, would need

to include this aspect.
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25. Jörissen J, Priefer C, Bräutigam K-R. Food waste generation at household level: Results of a survey

among employees of two European research centers in Italy and Germany. Sustainability. 2015; 7(3),

2695–715.

26. Osner R. Food Wastage. Food Sci Nutr. 1982; 82(4), 13–16.

27. Hamilton C, Denniss R, Baker D. Wasteful consumption in Australia. Discussion Paper Number 77,

March 2005. Manuka, Australia: The Australia Institute. ISSN 1322-5421.

28. WRAP. Econometric modelling and household food waste. WRAP, Banbury, 2014b.

29. Qi D, Roe BE. Household Food Waste: Multivariate Regression and Principal Components Analyses of

Awareness and Attitudes among U.S. Consumers. PLoS ONE. 2016; 11(7). https://doi.org/10.1371/

journal.pone.0159250 PMID: 27441687

30. Quested TE, Marsh E, Stunell D, Parry AD. Spaghetti soup: The complex world of food waste behav-

iours. Resour Conserv Recycl. 2013; 79, 43–51. https://doi.org/10.1016/j.resconrec.2013.04.011

Reducing false positives in understanding household food waste drivers

PLOS ONE | https://doi.org/10.1371/journal.pone.0192075 February 1, 2018 14 / 16

https://doi.org/10.1098/rstb.2010.0126
https://doi.org/10.1098/rstb.2010.0126
http://www.ncbi.nlm.nih.gov/pubmed/20713403
http://www.mdpi.com/2071-1050/9/1/37
http://www.mdpi.com/2071-1050/9/1/37
http://www.ncbi.nlm.nih.gov/pubmed/7370218
http://www.ncbi.nlm.nih.gov/pubmed/16092271
https://doi.org/10.1126/science.1185383
https://doi.org/10.1126/science.1185383
http://www.ncbi.nlm.nih.gov/pubmed/20110467
https://doi.org/10.1371/journal.pone.0159250
https://doi.org/10.1371/journal.pone.0159250
http://www.ncbi.nlm.nih.gov/pubmed/27441687
https://doi.org/10.1016/j.resconrec.2013.04.011
https://doi.org/10.1371/journal.pone.0192075
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